The impact of low-carbon consumption options on carbon footprints in the Nordic region

Authors:
Sarah Christine Olson University of Iceland, Iceland

Search for other papers by Sarah Christine Olson in
Current site
Google Scholar
Close
,
Jukka Heinonen University of Iceland, Iceland

Search for other papers by Jukka Heinonen in
Current site
Google Scholar
Close
,
Juudit Ottelin Norwegian University of Science and Technology, Norway

Search for other papers by Juudit Ottelin in
Current site
Google Scholar
Close
,
Michał Czepkiewicz Adam Mickiewicz University, Poland

Search for other papers by Michał Czepkiewicz in
Current site
Google Scholar
Close
, and
Áróra Árnadóttir University of Iceland, Iceland

Search for other papers by Áróra Árnadóttir in
Current site
Google Scholar
Close
Restricted access
Get eTOC alerts
Rights and permissions Cite this article

Changes in personal consumption play an important role in the reduction of greenhouse gases (GHGs) to stay within the 1.5-degree warming carbon footprint budget. Affluent countries have high carbon footprints from a consumptive perspective and therefore have a high potential to reduce emissions from personal consumption. To study this potential, we look at the consumption-based carbon footprints of respondents from a carbon footprint calculator survey from the Nordic countries to compare the carbon footprints of those who participated in selected low-carbon consumption options to those that did not. The total sample size of the survey is 8,000 households. We analysed seven low-carbon consumption options within the domains of diet, transportation and housing energy. An input-output based hybrid assessment model was used to calculate the consumption-based carbon footprints. In addition to analysing these options separately, we also analysed them in combination. The lowest carbon footprints were associated with those respondents who did not own a car or had a vegan or vegetarian diet, and the largest difference in emissions was associated with not flying and not owning a car. Rebound effects for the consumption options were largely limited and were mostly not significant. Participation rates in the low-carbon consumption options were generally low. These results underscore the need for higher rates of adopting multiple low-carbon consumption options and can inform policy on which consumption options could be the most impactful.

  • Aamaas, B., Borken-Kleefeld, J. and Peters, G.P. (2013) The climate impact of travel behavior: a German case study with illustrative mitigation options, Environmental Science & Policy, 33: 27382. doi: 10.1016/j.envsci.2013.06.009

    • Search Google Scholar
    • Export Citation
  • Afionis, S., Sakai, M., Scott, K., Barrett, J. and Gouldson, A. (2017) Consumption-based carbon accounting: does it have a future?, WIREs Climate Change, 8: e438.

    • Search Google Scholar
    • Export Citation
  • Akenji, L., et al. (2021) 1.5-Degree Lifestyles: Towards a Fair Consumption Space for All, Report, Berlin: Hot or Cool Institute.

  • Ala-Mantila, S., Heinonen, J., Clarke, J. and Ottelin, J. (2023) Consumption-based view on national and regional per capita carbon footprint trajectories and planetary pressures-adjusted human development, Environmental Research Letters, 18(2): 024035.

    • Search Google Scholar
    • Export Citation
  • Andersson, D. and Nässén, J. (2023) Measuring the direct and indirect effects of low-carbon lifestyles using financial transactions, Journal of Cleaner Production, 386: 135739. doi: 10.1016/j.jclepro.2022.135739

    • Search Google Scholar
    • Export Citation
  • Bjelle, E.L., Steen-Olsen, K. and Wood, R. (2018) Climate change mitigation potential of Norwegian households and the rebound effect, Journal of Cleaner Production, 172: 20817. doi: 10.1016/j.jclepro.2017.10.089

    • Search Google Scholar
    • Export Citation
  • Capstick, S., Khosla, R., Wang, S., Van Den Berg, N., Ivanova, D., Otto, I.M., Gore, T., Corner, A., Akenji, L. and Hoolohan, C. (2020) Bridging the gap: the role of equitable low-carbon lifestyles, The Emissions Gap Report, UNEP. doi: 10.18356/9789280738124c010

    • Search Google Scholar
    • Export Citation
  • Carlsson Kanyama, A., Nässén, J. and Benders, R. (2021) Shifting expenditure on food, holidays, and furnishings could lower greenhouse gas emissions by almost 40%, Journal of Industrial Ecology, 25: 160216. doi: 10.1111/jiec.13176

    • Search Google Scholar
    • Export Citation
  • Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B. and Woess-Gallasch, S. (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations, Resources, Conservation and Recycling, 53(8): 43447. doi: 10.1016/j.resconrec.2009.03.013

    • Search Google Scholar
    • Export Citation
  • Chester, M.V. and Horvath, A. (2009) Environmental assessment of passenger transportation should include infrastructure and supply chains, Environmental Research Letters, 4: 024008. doi: 10.1088/1748-9326/4/2/024008

    • Search Google Scholar
    • Export Citation
  • Clarke, J., Heinonen, J. and Ottelin, J. (2017) Emissions in a decarbonised economy? Global lessons from a carbon footprint analysis of Iceland, Journal of Cleaner Production, 166: 117586. doi: 10.1016/j.jclepro.2017.08.108

    • Search Google Scholar
    • Export Citation
  • Creutzig, F., Roy, J., Lamb, W.F., Azevedo, I.M., Bruine De Bruin, W., Dalkmann, H., Edelenbosch, O.Y., Geels, F.W., Grubler, A. and Hepburn, C. (2018) Towards demand-side solutions for mitigating climate change, Nature Climate Change, 8: 2603.

    • Search Google Scholar
    • Export Citation
  • Czepkiewicz, M., Ottelin, J., Ala-Mantila, S., Heinonen, J., Hasanzadeh, K. and Kyttä, M. (2018) Urban structural and socioeconomic effects on local, national and international travel patterns and greenhouse gas emissions of young adults, Journal of Transport Geography, 68: 13041. doi: 10.1016/j.jtrangeo.2018.02.008

    • Search Google Scholar
    • Export Citation
  • Czepkiewicz, M., Árnadóttir, A. and Heinonen, J. (2019) Flights dominate travel emissions of young urbanites, Sustainability, 11(22): 6340. doi: 10.3390/su11226340

    • Search Google Scholar
    • Export Citation
  • Dillman, K.J., Árnadóttir, A., Heinonen, J., Czepkiewicz, M. and Davíðsdóttir, B. (2020) Review and meta-analysis of EVs: embodied emissions and environmental breakeven, Sustainability, 12(22): 9390. doi: 10.3390/su12229390

    • Search Google Scholar
    • Export Citation
  • Dubois, G., Sovacool, B., Aall, C., Nilsson, M., Barbier, C., Herrmann, A., Bruyère, S., Andersson, C., Skold, B. and Nadaud, F. (2019) It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures, Energy Research & Social Science, 52: 14458. doi: 10.1016/j.erss.2019.02.001

    • Search Google Scholar
    • Export Citation
  • Grabs, J. (2015) The rebound effects of switching to vegetarianism: a microeconomic analysis of Swedish consumption behavior, Ecological Economics, 116: 2709. doi: 10.1016/j.ecolecon.2015.04.030

    • Search Google Scholar
    • Export Citation
  • Heinonen, J., Ottelin, J., Ala-Mantila, S., Wiedmann, T., Clarke, J. and Junnila, S. (2020) Spatial consumption-based carbon footprint assessments: a review of recent developments in the field, Journal of Cleaner Production, 256: 120335. doi: 10.1016/j.jclepro.2020.120335

    • Search Google Scholar
    • Export Citation
  • Heinonen, J., Olson, S., Czepkiewicz, M., Árnadóttir, A. and Ottelin, J. (2022) Too much consumption or too high emissions intensities? Explaining the high consumption-based carbon footprints in the Nordic countries, Environmental Research Communications. doi: 10.1088/2515-7620/aca871

    • Search Google Scholar
    • Export Citation
  • Hirth, S., Kreinin, H., Fuchs, D., Blossey, N., Mamut, P., Philipp, J., Radovan, I., Antal, O., Belousa, I. and Bösch, M. (2023) Barriers and enablers of 1.5° lifestyles: shallow and deep structural factors shaping the potential for sustainable consumption, Frontiers in Sustainability, 4: 1014662.

    • Search Google Scholar
    • Export Citation
  • Hubacek, K., Baiocchi, G., Feng, K., Muñoz Castillo, R., Sun, L. and Xue, J. (2017) Global carbon inequality, Energy, Ecology and Environment, 2: 3619. doi: 10.1007/s40974-017-0072-9

    • Search Google Scholar
    • Export Citation
  • IPCC (2022) Climate change 2022: mitigation of climate change, in P.R. Shukla et al. (eds) The Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York, NY: Cambridge University Press, pp 9; 325.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., Stadler, K., Steen-Olsen, K., Wood, R., Vita, G., Tukker, A. and Hertwich, E.G. (2016) Environmental impact assessment of household consumption, Journal of Industrial Ecology, 20: 52636. doi: 10.1111/jiec.12371

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., Barrett, J., Wiedenhofer, D., Macura, B., Callaghan, M. and Creutzig, F. (2020) Quantifying the potential for climate change mitigation of consumption options, Environmental Research Letters, 15: 093001. doi: 10.1088/1748-9326/ab8589

    • Search Google Scholar
    • Export Citation
  • Jokinen, J., Nilsson, K., Karlsdóttir, A., Heleniak, T., Kull, M., Stjernberg, M., Borges, L.A., Norlén, G., Randall, L. and Grunfelder, J. (2020) State of the Nordic Region 2020, Report, Copenhagen: Nordic Council of Ministers.

    • Search Google Scholar
    • Export Citation
  • Jones, C.M. and Kammen, D.M. (2011) Quantifying carbon footprint reduction opportunities for U.S. households and communities, Environmental Science & Technology, 45(9): 408895. doi: 10.1021/es102221h

    • Search Google Scholar
    • Export Citation
  • Kanemoto, K., Moran, D., Lenzen, M. and Geschke, A. (2014) International trade undermines national emission reduction targets: new evidence from air pollution, Global Environmental Change, 24: 529. doi: 10.1016/j.gloenvcha.2013.09.008

    • Search Google Scholar
    • Export Citation
  • Koide, R., Kojima, S., Nansai, K., Lettenmeier, M., Asakawa, K., Liu, C. and Murakami, S. (2021a) Exploring carbon footprint reduction pathways through urban lifestyle changes: a practical approach applied to Japanese cities, Environmental Research Letters, 16: 084001. doi: 10.1088/1748-9326/ac0e64

    • Search Google Scholar
    • Export Citation
  • Koide, R., Lettenmeier, M., Akenji, L., Toivio, V., Amellina, A., Khodke, A., Watabe, A. and Kojima, S. (2021b) Lifestyle carbon footprints and changes in lifestyles to limit global warming to 1.5 °C, and ways forward for related research, Sustainability Science, 16: 208799. doi: 10.1007/s11625-021-01018-6

    • Search Google Scholar
    • Export Citation
  • Leferink, E.K., Heinonen, J., Ala-Mantila, S. and Árnadóttir, A. (2023) Climate concern elasticity of carbon footprint, Environmental Research Communications, 5(7): 075003. doi: 10.1088/2515-7620/acda80

    • Search Google Scholar
    • Export Citation
  • Nässén, J., Andersson, D., Larsson, J. and Holmberg, J. (2015) Explaining the variation in greenhouse gas emissions between households: socioeconomic, motivational, and physical factors, Journal of Industrial Ecology, 19: 4809. doi: 10.1111/jiec.12168

    • Search Google Scholar
    • Export Citation
  • Newell, P., Twena, M. and Daley, F. (2021) Scaling behaviour change for a 1.5-degree world: challenges and opportunities, Global Sustainability, 4: e22. doi: 10.1017/sus.2021.23

    • Search Google Scholar
    • Export Citation
  • Orkustofnun/National Energy Authority of Iceland (2015) Generation of electricity in Iceland from 1915, https://orkustofnun.is/en/information/numerical_data/electricity.

    • Search Google Scholar
    • Export Citation
  • Ottelin, J. (2016) Rebound Effects Projected Onto Carbon Footprints-Implications for Climate Change Mitigation in the Built Environment, PhD Thesis, Helsinki: Aalto University.

    • Search Google Scholar
    • Export Citation
  • Ottelin, J., Heinonen, J. and Junnila, S. (2014) Greenhouse gas emissions from flying can offset the gain from reduced driving in dense urban areas, Journal of Transport Geography, 41: 19. doi: 10.1016/j.jtrangeo.2014.08.004

    • Search Google Scholar
    • Export Citation
  • Ottelin, J., Heinonen, J. and Junnila, S. (2017) Rebound effects for reduced car ownership and driving, in S. Kristjánsdóttir (ed) Nordic Experiences of Sustainable Planning: Policy and Practice, London: Routledge, pp 263.

    • Search Google Scholar
    • Export Citation
  • Ottelin, J., Cetinay, H. and Behrens, P. (2020) Rebound effects may jeopardize the resource savings of circular consumption: evidence from household material footprints, Environmental Research Letters, 15: 104044. doi: 10.1088/1748-9326/abaa78

    • Search Google Scholar
    • Export Citation
  • Saarinen, M.K. et al (2019) Effects of dietary change and policy mix supporting the change, End Report of the FoodMin Project, Helsinki: Publications of the Government’s analysis, assessment and research activities 2019.

    • Search Google Scholar
    • Export Citation
  • Salo, M. and Nissinen, A. (2017) Consumption choices to decrease personal carbon footprints of Finns, Reports of the Finnish Environmental Institute, 978-952-4875-0.

    • Search Google Scholar
    • Export Citation
  • Sorrell, S., Gatersleben, B. and Druckman, A. (2020) The limits of energy sufficiency: a review of the evidence for rebound effects and negative spillovers from behavioural change, Energy Research & Social Science, 64: 101439. doi: 10.1016/j.erss.2020.101439

    • Search Google Scholar
    • Export Citation
  • Stadler, K., Wood, R., Bulavskaya, T., Södersten, C.J., Simas, M., Schmidt, S., Usubiaga, A., Acosta-Fernández, J., Kuenen, J. and Bruckner, M. (2018) EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input-output tables, Journal of Industrial Ecology, 22: 50215. doi: 10.1111/jiec.12715

    • Search Google Scholar
    • Export Citation
  • Statistics Norway (2020) Electricity balance (MWh), by production and consumption, contents and month, https://www.ssb.no/en/statbank/table/12824/tableViewLayout1/.

    • Search Google Scholar
    • Export Citation
  • Research Centre of Finland Ltd LIPASTO (2021) Unit 2021 emissions - database, lipasto.vtt.fi/yksikkopaastot/.

  • Wiedmann, T., Lenzen, M., Keyßer, L.T. and Steinberger, J.K. (2020) Scientists’ warning on affluence, Nature Communications, p 3107.

  • Wolf, M.J., Emerson, J.W., Esty, D.C., De Sherbinin, A., Wendling, Z.A., et al. (2022) 2022 Environmental Performance Index, New Haven, CT: Yale Center for Environmental Law & Policy.

    • Search Google Scholar
    • Export Citation
  • Wood, R., Stadler, K., Simas, M., Bulavskaya, T., Giljum, S., Lutter, S. and Tukker, A. (2018) Growth in environmental footprints and environmental impacts embodied in trade: resource efficiency indicators from EXIOBASE3, Journal of Industrial Ecology, 22: 55364. doi: 10.1111/jiec.12735

    • Search Google Scholar
    • Export Citation

Supplementary Materials

    • Supplementary_AppendixS1.xlsx (XLSX 48 KB)
    • Supplementary_AppendixS2.docx (DOC 372 KB)
Sarah Christine Olson University of Iceland, Iceland

Search for other papers by Sarah Christine Olson in
Current site
Google Scholar
Close
,
Jukka Heinonen University of Iceland, Iceland

Search for other papers by Jukka Heinonen in
Current site
Google Scholar
Close
,
Juudit Ottelin Norwegian University of Science and Technology, Norway

Search for other papers by Juudit Ottelin in
Current site
Google Scholar
Close
,
Michał Czepkiewicz Adam Mickiewicz University, Poland

Search for other papers by Michał Czepkiewicz in
Current site
Google Scholar
Close
, and
Áróra Árnadóttir University of Iceland, Iceland

Search for other papers by Áróra Árnadóttir in
Current site
Google Scholar
Close

Content Metrics

May 2022 onwards Past Year Past 30 Days
Abstract Views 436 436 58
Full Text Views 41 41 3
PDF Downloads 48 48 2

Altmetrics

Dimensions